Product: PCN-250(Fe)
Synonyms: MIL-127(Fe); Fe-soc-MOF; PCN-250-(Fe3); Iron azobenzene tetracarboxylic
CAS:1771755-22-6 or 1257379-88-6
Basic Information
Unit MF. | C48H18N6O32Fe6 | Unit MW. | 1525.774 | ||
Coordination Metal | Fe | Linkers | 3,3’,5,5’-azobenzenetetracarboxylic (CAS:365549-33-3) | ||
Pore Size | 1nm | Pore volume | 0.5 cm3/g | ||
Surface Area | BET Specific surface 1200-1400 m2/g | ||||
Analog Structure | ![]() ![]() |
Product Property
Appearance | Brown Red Powders | ![]() |
||
Particle Size |
Stability
1) PCN-600(Fe) is stable in air, stable in aqueous and acidic conditions(PH2-11)
2) Thermal decomposition temperature above 300 ° C
2) Thermal decomposition temperature above 300 ° C
Preservation
1) Keep sealed in dry and cool condition
2) It is recommended to activate for 3 hours at 150 degree in vacuum.
Other Features
Fluorescence:NA
Applications
1) Gas (such as carbon dioxide) and pollutant adsorption
2) Iron-Lewis acid catalyst
2) Iron-Lewis acid catalyst
Characterizations
References
1) D. W. Feng, K. C. Wang, Z. W. Wei, Y. P. Chen, C. M. Simon, R. K. Arvapally, R. L. Martin, M. Bosch, T. F. Liu, S. Fordham, D. Q. Yuan, M. A. Omary, M. Haranczyk, B. Smit, H. C. Zhou, Nat. Commun. 2014, 5, 5723. DOI: 10.1038/ncomms6723 (2014) ; Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks
2) A. Dhakshinamoorthy, M.Alvaro, H.Chevreau, P. Horcajada, T.Devic, C. Serre and H. Garcia, Catal. Sci. Technol., 2012,2, 324-330, DOI: 10.1039/C2CY00376G ; Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide;
3) Wen-Juan Zhang, Xiao-Qin Liu, Lin-Bing Sun, Li Zheng, Shi-Chao Qi, Jia-Xin Li, Ding-Ming Xue; Journal of Materials Chemistry A, 2023, 11, 17484–17490; DOI: 10.1039/d3ta01241g; Maintaining the configuration of a light-responsive metal-organic framework: LiYGeO₄:Bi³⁺-incorporation-induced long-term bending through short-time light irradiation;
4) Jing Zhang, Frederic Dumur, Patricia Horcajada, Carine Livage, Pu Xiao, Jean Pierre Fouassier, Didier Gigmes, Jacques Lalevée,;Macromolecular Chemistry and Physics, 2016;DOI: 10.1002/macp.201600352;Iron-Based Metal-Organic Frameworks (MOF) as Photocatalysts for Radical and Cationic Polymerizations under Near UV and Visible LEDs (385–405 nm);
5) Zhijie Chen, Xingjie Wang, Ran Cao, Karam B. Idrees, Xinyao Liu, Megan C. Wasson, Omar K. Farha’;ACS Materials Letters, 2020, 2, 1129−1134; DOI: 10.1021/acsmaterialslett.0c00264; Water-Based Synthesis of a Stable Iron-Based Metal−Organic Framework for Capturing Toxic Gases;
6) Hannah F. Drake, Sayan Banerjee, Jialuo Li, Zachary T. Perry, Angelo Kirchon, Osman K. Ozdemir, Paul A. Lindahl, Hong-Cai Zhou, Gregory S. Day, Shaik Waseem Vali, Zhifeng Xiao, Elizabeth A. Joseph, Jason E. Kuszynski; ChemComm, 2019, 55, 12769—12772; DOI: 10.1039/c9cc04555d; The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal–organic framework;
7)Tatiya Chokbunpiam, Siegfried Fritzsche, Vudhichai Parasuk, Jürgen Caro, Suttichai Assabumrungrat; Chemical Physics Letters, 2018; DOI: 10.1016/j.cplett.2018.02.032; Molecular simulations of a CO₂/CO mixture in MIL-127