+86-21-51987688
sales@chemsoon.com
Home > News > A sustainable ultramicroporous MOF for hydrogen storage
A sustainable ultramicroporous MOF for hydrogen storage
Summary: 
The authors from UCLouvain & DEMOKRITOS developed a sustainable ultramicroporous Mg-gallate (MgGal) MOF with 1.4 wt % H₂ uptake at 77 K/1 atm, achieving fast, reversible hydrogen storage without open metal sites.
 
Background: 
1. To address the H₂-storage challenge, previous MOFs relied on open-metal sites (high Qst but low capacity and complex synthesis) or high-surface-area hosts (low Qst 5–7 kJ mol⁻¹). 
2. The authors proposed confinement-driven physisynthesis inside <0.7 nm pores of a bio-sourced gallate framework, obtaining constant 8.6 kJ mol⁻¹ Qst and scalable mechanochemistry.
 
Research Content: 
1. Synthesis: 
   Mechanochemical ball-milling of Mg(OH)₂ + gallic acid·H₂O (1 h, 500 rpm) → MgGal·2H₂O; 100 % yield, 605 kg m⁻³ day⁻¹ space-time yield. 
2. Characterizations: 
   1) BET 424 m² g⁻¹; CO₂ (195 K) confirms ultramicropores ≈0.5 nm. 
   2) SEM/TEM: solvothermal 2–6 µm plates vs mechano 50–200 nm nodules. 
   3) In-situ synchrotron PXRD & neutron diffraction track phase I→II dehydration (120 °C) and four D₂ adsorption sites. 
3. Application: 
   Volumetric H₂ capacity 1.4 wt % (77 K, 1 atm); equilibrium ≤2 min; 10 cycles without loss; beats most open-site-free MOFs. 
4. Mechanism: 
   Constant Qst 8.6 kJ mol⁻¹ arises from van-der-Waals confinement inside 0.5 nm channels; no metal-H₂ binding; four crystallographic D₂ sites fill progressively.
 
Outlook: 
Green, rapid mechanosynthesis of MgGal delivers a low-cost, metal-site-free H₂ store that rivals best-performing ultramicroporous MOFs, guiding sustainable porous materials for cryogenic hydrogen tanks.
 
A sustainable ultramicroporous MOF for hydrogen storage 
Authors: Timothy Steenhaut, Guillaume Esser, Nicolas Malherbe, Loïc Rochez-Ladeuze, Christos Tampaxis, Lauraleen Barremaecker, Georgia Charalambopoulou, Theodore Steriotis, Sophie Hermans, Yaroslav Filinchuk 
DOI: 10.26434/chemrxiv-2025-bd252 
Link: https://doi.org/10.26434/chemrxiv-2025-bd252 
 
The above review is for academic progress sharing. For any errors or copyright issues, please contact us for correction or removal.